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Abstract

We present a spectral numerical method for solving one-dimensional systems of partial differential equations (PDEs)

which arise from linearization of the Euler equations about an exact solution depending on space and time. A two-

domain Chebyshev collocation method is used. Matching of quantities is performed in the space of characteristic

variables as suggested by Kopriva [Appl. Numer. Math. 2 (1986) 221; J. Comput. Phys. 125 (1996) 244]. Time-de-

pendent boundary conditions are handled following an approach proposed by Thompson [J. Comput. Phys. 68 (1987)

1; 89 (1990) 439]. An exact numerical stability analysis valid for any explicit three-step third-order non-degenerate

Runge–Kutta scheme is provided. The numerical method is tested against exact solutions for the three fundamental

modes of a compressible flow (entropy, vorticity and acoustic modes).

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we present a numerical method for solving systems of partial differential equations (PDEs)

which arise from linearization of the Euler equations about a one-dimensional exact solution depending on

space and time.

Stability analyses of fluid flows often start with a linear stability analysis. In situations where the

mean flow depends on time, linearizing the Euler or the Navier–Stokes equations about such a flow

leads to a linear system of PDEs for perturbations. The coefficients of this linear system depending on
space and time variables, the normal mode analysis [3] no longer applies and one has to solve an
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initial and boundary value problem (IBVP) for the perturbations. The one-dimensional exact solutions

that are considered here are of self-similar types [30]. Most of the time, the set of ordinary differential

equations (ODEs) resulting from the self-similar analysis must be solved numerically.

The linear stability of exact solutions of the Euler equations has been addressed by several authors

[1,17,20,25,28,29]. In these examples, the mean flows are obtained from analytical calculations.

Moreover, the linear perturbation analysis can also be carried out analytically [1,17,25,28]. More

generally, some extra assumptions (considering only solenoidal perturbations, for example) may be

needed to analytically solve the linear IBVP [1]. Sometimes, even when the exact solution is known
explicitly, the linear IBVP is solved numerically [29]. In situations where the mean flow is only known

numerically, the linear IBVP must also be solved numerically (see e.g. [24]). The linear system of

PDEs entering in this IBVP is of hyperbolic type and exhibits a specific structure. Indeed the linear

stability analysis of such one-dimensional solutions relies on a Fourier decomposition of the transverse

motion perturbations. As a result, the linear system of PDEs depends explicitly on the transverse

wavenumber.

Numerical integrations of such IBVPs with finite difference methods have been previously carried out:

see for example [29]. On the other hand, spectral methods have been shown to be very efficient for nu-
merically solving PDEs. This efficiency is due to the low requirement in terms of number of collocation

points per wavelength since the convergence is generally faster than algebraic. This feature is especially

desirable when one wishes to accurately describe acoustic waves as it is the case with the linearized Euler

equations. In a more general context, multidomain solutions of the Euler and Navier–Stokes equations

have been investigated, see [11–15,19].

Here we propose a collocation Chebyshev method for handling the above-mentioned particular

form of the linearized Euler equations. The algorithm is based on an explicit three-step third-order

Runge–Kutta scheme, a treatment of time-dependent boundary conditions according to Thompson�s
approach [22,23], and a matching of quantities at subdomain interfaces following Kopriva�s work
[10,15]. The numerical stability analysis of this algorithm is derived explicitly for periodic and Di-

richlet boundary conditions in the case of uniform and constant mean flows. From this study, it

turns out that the stability constraint on the timestep depends strongly on the transverse wave-

number.

We have in mind applications to stability analyses of self-similar solutions of a particular form. An

example of such applications is the problem of the hydrodynamic stability of a centered rarefaction

wave: see [25]. In this specific case, provided that proper boundary conditions are specified, the mean
flow is a non-uniform, non-constant self-similar exact solution of the Euler equations. This paper

addresses some of the numerical difficulties encountered when applying the present method to such

cases.

The outline of the paper is the following: the linear perturbation equations are detailed in the general

case in Sections 2, Section 3 describes the numerical method, Section 4 deals with the numerical stability

analysis, and finally results of test cases are reported in Section 5.

2. Equations and boundary conditions

2.1. Mean flow equations

Consider the motion of an inviscid, non-heat-conducting fluid, obeying the polytropic equation of state.

The equations of motion – the three-dimensional Euler equations – can be written, in Eulerian form and

Cartesian coordinates ðx; y; zÞ, as
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oq
ot

þ~vv � rq þ qr �~vv ¼ 0;

q
o~vv
ot

 
þ~vv � r~vv

!
þrp ¼~00;

op
ot

þ~vv � rp þ cpr �~vv ¼ 0;

ð1Þ

where q, the fluid density,~vv ¼ vx~eex þ vy~eey þ vz~eez, the fluid velocity vector, p, the fluid pressure, depend on
the coordinate vector ~xx ¼ ðx; y; zÞ and t, and c is the fluid adiabatic exponent.
For one-dimensional motions in the x-direction, we denote by �xx; �qq; �vvx; �pp, the corresponding fluid quan-

tities. Introducing the Lagrangian coordinate m defined by the equation

m ¼
Z �xxðm;tÞ

�xxð0;tÞ
�qqðx; tÞdx; ð2Þ

the equations of motion (1) can be written, in Lagrangian form, as the one-dimensional system

o�qq
ot

þ �qq2
o�vvx
om

¼ 0;

o�vvx
ot

þ o�pp
om

¼ 0;

�vvy ¼ �vvz ¼ 0;
o�pp
ot

þ c�qq�pp
o�vvx
om

¼ 0;

ð3Þ

where now �qq, �vvxð¼ o�xx=otÞ and �pp are taken as functions of ðm; tÞ. This system constitutes the mean flow
equations of motion.

2.1.1. Particular cases of self-similar solutions

Our primary motivation lies in linear stability analyses of self-similar solutions of (3) having the form

�qqðm; tÞ ¼ . �GGðnÞ; �vvxðm; tÞ ¼
A
.
ta�1 �VV ðnÞ; �ppðm; tÞ ¼ A2

.
t2ða�1Þ �PP ðnÞ; ð4Þ

where the similarity variable n is given by

n ¼ m
Ata

; ð5Þ

the similarity exponent a being a real constant. Both . and A are constants chosen so that the reduced
functions �GG; �VV ; �PP and the similarity variable n are dimensionless ([30], Chapter xii). This specific form covers
many self-similar solutions of the one-dimensional gas dynamic equations [4,30]: e.g. centered rarefaction

waves, shock waves, and Riemann problem solutions.
Introducing the reduced functions in (3) leads to a first-order ODE in the variable n for the unknown

�VV ¼ ð �GG �VV �PP ÞT. The change of variables ðm; tÞ ! n transforms then any initial or boundary conditions
supplementing the system of PDEs (3) into boundary conditions at fixed n-abscissas (eventually infinite) for
the ODE satisfied by �VV. In particular, any discontinuity – contact discontinuity or wave front – of a
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solution �VV is, due to the self-similar assumption, of constant abscissa n. In that respect, choosing a La-
grangian form for the equations of motion (3), and the definition (5) for the similarity variable n is justified
by the fact that it greatly simplifies the handling of contact discontinuities. Performing linear stability

analyses of such self-similar solutions requires of course that these solutions are known – either explicitly or

numerically – including the locations of their discontinuities, if any.

2.1.2. Restriction to uniform and constant mean flows

Prior to considering stability analyses of solutions of the type (4), this paper focuses on the case of
uniform and constant mean flows. The reason for doing so is twofold. First, such a restriction will

allow us to formulate explicit numerical stability criteria which will be of practical use, in more general

cases, for the numerical method we propose. Second, we will be able to provide quantitative results

regarding the stability and accuracy of this method thanks to the availability of exact solutions in this

simplified setting. The assumption of uniform and constant flows implies that the reduced functions in

(4) are independent of the variable n since the corresponding functions of ðm; tÞ are constant. With the
exception of Section 2.2 and of Appendix A, the rest of this paper relies on this simplifying as-

sumption.
In addition, in order to avoid unnecessary complications brought by the self-similar transformation

(4) and (5), we have retained, for the sequel, formulations of the motion equations in the variables

ðm; tÞ rather than in the variables ðn; tÞ. This choice is justified by the fact that the change of variables
ðm; tÞ ! ðn; tÞ does not alter the properties of the linear perturbation equations: see Section 2.2 and
Appendix A. Consequently the remarks made in the preceding paragraph regarding the locations of

boundary conditions and discontinuities of the self-similar solutions �VV must be transposed – however

unrealistic this may seem – to the corresponding functions of ðm; tÞ: i.e., �qq, �vvx, and �pp. We emphasize
that this peculiarity is a pure matter of convenience and is without consequence for both the numerical
stability results of Section 4 and the numerical method implementation which actually relies on ðn; tÞ-
formulations.

2.2. Linear perturbation equations

In fluid mechanics, one classically formulates the linear stability problem of a mean flow in terms of

perturbations which, without further assumption, are functions of three space variables and time. These

perturbations are sought as solutions of an IBVP given by: (a) a linearized form of the three-dimensional

Euler equations 1, (b) linear perturbations of the boundary conditions satisfied by the mean flow under

study, and (c) initial conditions.

Here, we have retained an Eulerian description of the perturbations in the coordinate system ðm; y; zÞ
for the formulation of this IBVP. This particular choice follows not only from the coordinate system
used for the one-dimensional solution, but also from the fact that a Lagrangian description of the

perturbations would further complicate the definition of initial conditions. Indeed, in the case of a

Lagrangian description, initial position perturbations would have to be supplied in addition to the

initial conditions required by an Eulerian description. As is usual, the formulation of this linear per-

turbation IBVP is simplified by performing a Fourier transform in the yz-plane – or transverse plane –
of the linear perturbation equations and boundary conditions. Introducing the transverse wavenumber

k? defined by

k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
; ð6Þ

the evolution equations for the linear perturbation Fourier components associated to k? may be written as
(see Appendix A)
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oq
ot

þ �qq2
ovx
om

þ �qq
o�vvx
om

q

 
þ o�qq
om

vx þr? �~vv?

!
¼ 0; ð7aÞ

ovx
ot

þ op
om

� 1
�qq
o�pp
om

q þ �qq
o�vvx
om

vx ¼ 0; ð7bÞ

o

ot
r? �~vv?
� �

� k2?
�qq
p ¼ 0; ð7cÞ

op
ot

þ c�pp �qq
ovx
om

�
þr? �~vv?

	
þ �qq

o�pp
om

vx

 
þ c

o�vvx
om

p

!
¼ 0; ð7dÞ

where now q; vx;r? �~vv?; p denote the linear perturbation Fourier components of – respectively – the fluid
density, the x-velocity, the transverse expansion, and the pressure, all taken as functions of ðm; k?; tÞ.
In writing down (7a)–(7d) we assume that the mean flow quantities �qq; �vvx; �pp are sufficiently smooth for

these PDEs to be meaningful in the class of Cn-functions for some nP 0. Hence we consider the above

system in regions excluding any discontinuity of the mean flow quantities or of their first order m-deriv-
atives. Would the mean flow under study present such discontinuities, the corresponding linear pertur-

bation jump conditions would be used to define boundary conditions for (7a)–(7d) as it is classically done in

fluid mechanics. For practical applications, this approach is justified by the remarks made earlier (Section

2.1) about the mean flow boundary and discontinuity locations.

Eqs. (7a)–(7d) constitute a hyperbolic system of one-dimensional linear conservation laws with source
terms. This systemmay be written, in terms of the vector of primitive variablesV ¼ ðq vx r? �~vv? pÞT, as

oV

ot
þ A

oV

om
þ BV ¼ 0 ð8Þ

with

A ¼
0 �qq2 0 0
0 0 0 1

0 0 0 0

0 ð�qq�ccÞ2 0 0

0BB@
1CCA; ð9Þ

and, in the particular case of uniform mean flows,

B ¼

0 0 �qq 0

0 0 0 0

0 0 0 �k2?=�qq
0 0 c�pp 0

0BB@
1CCA: ð10Þ

Hereinabove, �cc denotes the isentropic sound velocity of the mean flow. With this notation, the eigenvalues
of A – taking into account their order of multiplicity – are

K1 ¼ ��qq�cc; K2 ¼ K3 ¼ 0; K4 ¼ �qq�cc; ð11Þ

while a basis of corresponding eigenvectors is given by

R1 ¼

1
�cc2

� 1
�qq�cc
0

1

0BB@
1CCA; R2 ¼

1

0

0

0

0BB@
1CCA; R3 ¼

0

0

1

0

0BB@
1CCA; R4 ¼

1
�cc2
1
�qq�cc
0

1

0BB@
1CCA: ð12Þ
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Hence system (8) is hyperbolic, its eigenvalues being those of the linearized system of one-dimensional gas

dynamics written in Lagrangian coordinates. We note however that since the transverse motion – in the

form of its transverse expansion r? �~vv? – is incorporated in the vector of primitive variables V, this system
is nonstrictly hyperbolic, 0 being a double eigenvalue. We recall that a system of q equations of the form of
(8) is said to be hyperbolic if the eigenvalues of the matrix A are all real and if the corresponding eigen-

vectors form a basis of Rq. If in addition these eigenvalues are distinct, the system is called strictly hy-

perbolic: e.g. see [4]. For one-dimensional linear hyperbolic systems such as (8), the main consequence of

nonstrict hyperbolicity is that characteristics may be surfaces or subspaces of higher dimensions, instead of
curves.

For a uniform mean flow, some of the characteristic fields defined by (12) can be identified with the three

basic fluctuation modes of a compressible flow [2]. Hence, the first (fourth) characteristic field corresponds

to left- (respectively, right-) propagating acoustic plane waves along the x-direction with Lagrangian
propagation velocity given by K1 ¼ ��qq�cc (respectively, K4 ¼ �qq�cc). Similarly, the second characteristic field
coincides with entropy modes. However, the third characteristic field only represents purely transverse

dilatations and is not specifically associated with any of these basic modes. Further inspection of system (8)

leads to the following remarks:
• For purely longitudinal perturbations, i.e., depending only on m and t, system (8) reduces to the linear
one-dimensional system of gas dynamics in Lagrangian coordinates since then k? ¼ 0.

• For purely transverse perturbations, i.e., depending only on k? and t, system (8) degenerates into a sys-
tem of first order ODEs.

Therefore, depending on the spatial dependence of the perturbations under consideration, the nature of the

system of equations to be solved may change radically. This peculiarity has of course profound implications

when considering the numerical approximation of (8). Note that all of the above remarks also apply to the

ðn; tÞ-formulation of the linear perturbation Eqs. (7a)–(7d) given in Eqs. (A.6)–(A.8) of Appendix A, hence
justifying our choice of using formulations in the ðm; tÞ-variables.
As previously stated, boundary conditions for the solutions of the linear system (8) result from a per-

turbation and linearization process applied to the mean flow boundary conditions. In this paper we do not

address the problem of defining and implementing boundary conditions for this system of equations in its

generality. Instead we focus on the numerical treatment of (i) periodic boundary conditions, (ii) non-re-

flecting boundary conditions, and (iii) time-dependent physical boundary conditions bearing on the density

perturbations. In particular, the cases of material surface boundary conditions and of shock-wave jump

relations are not considered here.
We note that the positions of the mean flow boundary conditions are stationary in the n- (alternatively

m-) coordinate system (cf. Section 2.1). In addition, for the sake of simplicity, we assume here that the
boundary conditions for the linear perturbations are applied at the same positions as those for the mean

flow, i.e., at points of fixed n- (alternatively m-) abscissas. This assumption is fully compatible with the
boundary conditions of types (i) and (ii) listed hereinabove, but restricts the kind of boundary conditions of

type (iii) that can be handled. For example, boundary conditions at a material surface cannot be treated.

Indeed, in such a case, a proper definition would include an evolution equation for the linear perturbation

of the exact boundary location, a complication we do not wish to introduce for the moment.

3. Numerical method

Since system (8) is solved on a bounded domain, we need to address the way physical boundary con-

ditions are handled. In this paper, we consider a two-domain method, in which case we also need to detail

the way quantities are matched at the subdomain interface. Indeed, for an open flow, a proper control of

wave reflections from and wave transmissions at boundaries is necessary. Accurate boundary condition
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treatments are especially required for high-order numerical methods. In the following, we start by de-

scribing the boundary condition treatments for physical boundary conditions and matching conditions at

the subdomain interface, and pursue by defining the numerical approximation method applied within each

subdomain.

3.1. Boundary condition treatment

For a hyperbolic system of equations, it is known that given a set of physical conditions at a boundary,
the number of boundary conditions required depends on the set of characteristics at this point [9]. When

dealing with a linear hyperbolic system, as it is the case here, the method of characteristics provides an

appropriate framework for the numerical treatment of boundary conditions [9]. Based on this method,

Thompson [22,23] has proposed boundary condition treatments for handling time-dependent boundary

conditions. Thompson�s approach, which we choose to follow here, consists in rewriting system (8) under
characteristic form, i.e.,

R�1 oV

ot

� 	
þ K R�1 oV

om

� 	
þ R�1BRðR�1VÞ ¼ 0; ð13Þ

where K is the eigenmatrix defined by (11), or

K ¼ R�1AR ¼ diag
�
� �qq�cc; 0; 0; �qq�cc

�
; ð14Þ

and R is the right eigenvector matrix R ¼ ðR1 R2 R3 R4Þ, its inverse being

R�1 ¼

0 � 1
2
�qq�cc 0 1

2

1 0 0 �1=�cc2

0 0 1 0

0 1
2
�qq�cc 0 1

2

0BBBBB@

1CCCCCA: ð15Þ

For a partial differential system, the number of boundary conditions at a given point is at most equal to the

degree of the system of equations. For a linear hyperbolic system, the number of boundary conditions that

must be applied at a given point depends on the sign of the eigenvalues of the diagonal matrix K at this
point. It is convenient to write the diagonal matrix K as

K ¼ Kin þ Kout; ð16Þ

where Kin contains the incoming wave eigenvalues and Kout the outgoing wave eigenvalues. The incoming
wave eigenvalues are determined with respect to the outgoing normal vector defined at the boundary:

they correspond to the characteristics entering the domain (see Fig. 1 for an example). Applying this

decomposition and left-multiplying (13) by the matrix R leads to the following equation at the

boundary:

o

ot
Vþ RðLþL
Þ þ BV ¼ 0; ð17Þ

where the vector LþL
 is a splitting of the term KR�1ðoV=omÞ. The non-zero components of the vector
L correspond to outgoing waves and are given by

L ¼ KoutR
�1 oV

om
; ð18Þ
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while the non-zero components of the vector L
 correspond to incoming waves, and are determined from

the physical boundary conditions.

3.1.1. Periodic boundary conditions

For periodic boundary conditions on the domain ½m0;m1�, the value of L
 at m0 is defined by

L
ðm0Þ ¼ KinR
�1 oV

om

����
m�
1

; ð19Þ

while its value at m1 is

L
ðm1Þ ¼ KinR
�1 oV

om

����
mþ
0

: ð20Þ

The justification for this choice follows directly from the matching condition treatment detailed below

(Section 3.2).

3.1.2. Non-reflecting boundary conditions

According to the characteristic variable analysis of Thompson [22,23], a non-reflecting boundary con-

dition is characterized by the fact that the amplitudes of the incoming waves are constant, in time, at the

boundary.
For purely longitudinal perturbations – i.e., such that k? ¼ 0 – system (8) reduces to the homogeneous

linearized system of one-dimensional gas dynamics (Section 2.2) and can therefore be written in true

characteristic form. Applying the above characterization of non-reflecting boundary conditions amounts

then to taking L
 ¼ 0 in (17). This definition yields satisfactory results in numerical applications, even
when the boundary is characteristic – i.e., coincides with one of the characteristics (see Section 5.4).

For non-zero transverse wavenumber (k? 6¼ 0), the system of Eqs. (8) is no longer homogeneous due to
the presence of the coupling term BV. Consequently, this system cannot be written in true characteristic

form. In particular, the equations in (13) are coupled. Nevertheless, following Thompson [23], one may still
define L
 so that the amplitudes of the incoming wave components in (17), as identified by the decom-

position (16), are constant in time. In effect, this corresponds to assigning the incoming wave components of

�R�1BV to the non-zero components of L
. However, this definition has given poor results for configu-

rations similar to the acoustic plane waves of Section 5.4, but with k? 6¼ 0. Amplitudes of reflected waves
which appeared at the non-reflecting boundary in these numerical experiments were sufficiently large to

corrupt the whole resolution within a few periods of the exact solution. Moreover, results worsened with

increasing values of k?. This situation is reminiscent of numerical results observed with non-reflecting

Fig. 1. Boundary condition treatment with the method of characteristics. Eigenvalues and definitions of the incoming (––) and

outgoing (–––) waves.
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boundary condition treatments based on the method of characteristics for the three-(two-)dimensional

linearized Euler equations: see [21]. This is not surprising since system (8) can be viewed as the Fourier

decomposition of these equations in the plane tangent to the boundary.

This defect of the characteristic based treatment is primarily due to the lack of a true characteristic

formulation for the system of Eqs. (8) when k? 6¼ 0. In these circumstances, the conditions to be imposed, at
a boundary, on incoming and outgoing waves so as to eliminate reflected waves, are far from being clear. In

addition, having to deal with boundaries which are characteristics of dimension 2 – m ¼ cst corresponds to
the second and third characteristic fields – does not simplify the matter. Consequently, we consider the
present numerical treatment of non-reflecting boundary conditions to be applicable only for k? ¼ 0, al-
though it has been used, with success, for non-propagative modes with k? 6¼ 0 in some of the numerical tests
of Section 5. We leave out, as an open question, the problem of a non-reflecting boundary condition nu-

merical treatment compatible with the high accuracy of a Chebyshev spectral method.

3.1.3. Time-dependent boundary conditions

For time-dependent boundary conditions at abscissa m0 or m1, the number of flow variables to be
prescribed corresponds to the number of incoming waves at this point. For example, at abscissa m0, only
one incoming wave is present so that a single boundary condition must be specified at this point. As a

particular example, we choose to impose a time-dependent perturbed density q at m0. Following Thompson
[23], we define the value of the fourth component of L
 to be determined from the time-dependent con-

dition

qðm ¼ m0; k?; tÞ ¼ q0ðtÞ:

Combining this equation with the first equation of (17) gives the proper definition of L

4, i.e.,

L

4 ¼ �L1 � �cc2 L2

�
þ ðBVÞ1 þ

o

ot
q

	
¼ �L1 � �cc2 L2

�
þ �qqr? �~vv? þ d

dt
q0ðtÞ

	
: ð21Þ

The same reasoning applies when imposing any other flow quantities at any boundary point m0.

3.2. Matching condition treatment

Matching the quantities at the subdomain interface is performed in a manner similar to the imposition of

the physical boundary conditions. Indeed, the system of equations is solved on a subdomain with either

physical boundary conditions or matching boundary conditions at each boundary. In the latter case, the

non-zero components for incoming waves of the vector L
 are given by [10,15]

L
 ¼ KinR
�1 oV

om

����
neighbor

; ð22Þ

where oV=omjneighbor means that the derivative is computed on the neighboring subdomain. This procedure
amounts to introducing the proper upwinding at the boundary, as it is done, for example, in upwind finite

difference methods.

3.3. Numerical approximation method

Given a spatial discretization of the domain ½a; b� by N points, the semi-discrete form of (8) is defined as

o

ot
V4N þ S4NV4N ¼ 0; ð23Þ

600 C. Boudesocque-Dubois et al. / Journal of Computational Physics 184 (2003) 592–618



where V4N is a 4N -component vector made of the N values of the density, followed by the N values of the x-
velocity. . ., i.e.,

V4N ¼ V1ðm1Þ � � �V1ðmN ÞV2ðm1Þ � � �V3ðmN ÞV4ðm1Þ � � �V4ðmNÞ½ �T:

In the above equation, S4N is a 4N � 4N operator, which depends only on the mean flow state, and is

defined by

S4N ¼ A4ND
1
N I4N þ B4N ; ð24Þ

where

• D1N is the matrix of the first-order spatial derivative;

• I4N the 4N � 4N identity matrix;
• A4N and B4N are deduced from A and B (9), (10) in the same manner as the vector V4N is deduced from V.

At this point, we emphasize that the approximation of the first-order operator D1N is not yet specified.

Several types of approximation may be used: finite differences or spectral methods. In this paper, we choose

a collocation spectral method [18]. In this case, variables are expanded over a Chebyshev polynomial basis

as

V4NðmÞ ¼
XN
n¼1

anTnðxðmÞÞ; ð25Þ

with Gauss–Lobatto collocation points xi ¼ cosði� 1Þp=ðN � 1Þ, i ¼ 1; . . . ;N , with the scaling

mðxÞ ¼ ðb� aÞx=2þ ðbþ aÞ=2. Spatial differentiation is then performed in the physical space by means of a
matrix vector product.

The time discretization is defined with

tqþ1 ¼ tq þ Dtq; Dtq > 0; q 2 N;

and VðqÞ denotes the value of the vector V at time tq. In practice, an explicit three-step third-order Runge–
Kutta scheme ([27], Eq. (11)) is used to perform the time integration.

4. Numerical stability analysis

As already stated, system (8) is a linearization of the one-dimensional gas dynamic equations. In this

formulation, the transverse directions y and z have been Fourier-decomposed and reduced to the presence
of the transverse wavenumber k? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
. The resulting discretized system (23) inherits the same pe-

culiarities as those of system (8) (see end of Section 2.2). Consequently the numerical stability properties of

(23) are strongly affected by the transverse wavenumber k?, as opposed to the purely one-dimensional case
(k? ¼ 0) which has already been treated for Chebyshev collocation methods by Gottlieb [5,7]. In this section
we derive rigorously numerical stability constraints within the von Neumann stability analysis [9] in the

case of a uniform mean motion over a single computational domain.

System (23) being time integrated with a three-step third-order non-degenerate Runge–Kutta scheme, it

follows that ([27], Section 7)

V
ðqþ1Þ
4N ¼ I4N

�
� DtS4N þ 1

2
ðDtS4N Þ2 �

1

6
ðDtS4N Þ3

	
V

ðqÞ
4N � K4N ðDtÞVðqÞ

4N : ð26Þ

A sufficient condition for strong stability of (26) is ([6], Chapter 9)
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R K4NðDtÞð Þ ¼ max
kK

jkKj6 kK4N ðDtÞk6 1þ jDt; ð27Þ

where R and kK are, respectively, the spectral radius and the eigenvalues of the amplification matrix

K4N ðDtÞ, j is a finite positive constant, and k � k is the Euclidean norm [26]. However, stability conditions
involving only eigenvalues are, in practice, more convenient to use than the above condition. This leads us

to consider the von Neumann condition, or

R K4NðDtÞð Þ6 1þ jDt;

which only provides a necessary condition for stability. Therefore, we adopt the more restrictive condition

[9]

R K4NðDtÞð Þ6 1: ð28Þ

This condition corresponds, for any explicit three-step third-order non-degenerate Runge–Kutta scheme, to

the inequality

1

���� � kDt þ 1
2
ðkDtÞ2 � 1

6
ðkDtÞ3

����26 1; ð29Þ

for all the eigenvalues k of S4N . Therefore, in order to obtain a practical stability criterion, we first need to
derive expressions for these eigenvalues.

4.1. Eigenvalues of the matrix S4N

The eigenvalues k of the matrix S4N being the roots of its characteristic polynomial, we have

det S4Nð � kI4N Þ ¼

�kIN �qq2D1N �qqIN 0

0 �kIN 0 D1N
0 0 �kIN �ðk2?=�qqÞIN
0 ð�qq�ccÞ2D1N �qq�cc2IN �kIN

���������

��������� ¼ 0: ð30Þ

The above determinant may be first expanded with respect to the first block-column, since the first block-

element is diagonal. The resulting 3N � 3N determinant may be simplified by combining the second and
third block-rows, and then expanded with respect to the second block-column. Hence (30) is replaced by

ð � kÞ2N
�kIN D1N

ð�qq�ccÞ2D1N � 1
k k2 þ k2?�cc

2
� �

IN

�����
����� ¼ ð � kÞ2N det S2Nð Þ ¼ 0: ð31Þ

Having noted that the blocks off the diagonal are identical up to a scalar coefficient and provided D1N can be

put in diagonal form, we introduce P, the left eigenvector matrix of D1N , such that D
1
N ¼ P�1 diagðdjÞP,

where dj are the complex eigenvalues of D
1
N . Then, by defining J2N to be

J2N ¼ 0 P

P 0

� 	
; ð32Þ

the matrix J�1
2NS2NJ2N is block-diagonal of the form of Eq. (B.1), Appendix B. The characteristic polynomial

of such a matrix comes as (Theorem B.1, Appendix B)YN
j¼1

k2
�

þ �cc2ðk2? � �qq2d2j Þ
�
: ð33Þ
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Hence from (31), it turns out that Eq. (30) writes

ð � kÞ2N
YN
j¼1

k2
�

þ �cc2ðk2? � �qq2d2j Þ
�
¼ 0: ð34Þ

For the stability analysis, we need to fully characterize the spectrum of S4N . This requires us to determine

the real and imaginary parts of the eigenvalues k, which in turn depend on the real and imaginary parts of
the eigenvalues dj. Consequently we rewrite the non-zero roots of Eq. (34) as

ðRe½kj� þ iIm½kj�Þ2 ¼ ��cc2 k2?
�

� �qq2 Re½dj�2
�

� Im½dj�2 þ 2iRe½dj� Im½dj�
��

; j ¼ 1; . . . ;N : ð35Þ

This formulation allows us to obtain the following expressions for the eigenvalues kj:
• If ReðdjÞ ¼ 0,

kj ¼ �i�cc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qq2 ImðdjÞ2 þ k2?

q
: ð36aÞ

• If ImðdjÞ ¼ 0 and �qq2 ReðdjÞ2 P k2?,

kj ¼ ��cc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qq2 ReðdjÞ2 � k2?

q
: ð36bÞ

• If ImðdjÞ ¼ 0 and �qq2 ReðdjÞ26 k2?,

kj ¼ �i�cc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? � �qq2 ReðdjÞ2

q
: ð36cÞ

• Otherwise

kj ¼ � �ccffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qj þRj

p 1

2�qq2
Qj �Rj

ReðdjÞ ImðdjÞ

�
� i
	

ð36dÞ

with

Qj ¼ k2? � �qq2 ReðdjÞ2
�

� ImðdjÞ2
�
;

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�qq2 ReðdjÞ ImðdjÞ
� �2

þ Q2j

r
:

In all cases, the modulus of the eigenvalue is given by jkjj ¼ �cc
ffiffiffiffiffiffi
Rj

p
. We note that these expressions do not

depend on the choice made for the first-order spatial derivative operator D1N .

Having determined the eigenvalues of S4N , we may now turn to the formulation of the stability condition

(29).

4.2. Numerical stability condition

The stability condition (29) defines a domain of stability in the plane ðX ; Y Þ ¼ ð�DtReðkÞ;�Dt ImðkÞÞ:
cf. [18, Fig. 4.16]. Given the shape of this domain, we consider the region defined by

X
b1

� 	2
þ Y

b2

� 	2
6 1; X 6 0; ð37Þ

where
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b1 ¼ 1� 4
�

þ
ffiffiffiffiffi
17

p ��1=3
þ 4
�

þ
ffiffiffiffiffi
17

p �1=3
;

b2 ¼
ffiffiffi
3

p
:

The values of these coefficients correspond to the intersections of the stability domain boundary with the X -
and Y -axes [18, Table 4.8]. One can check that the portion of elliptical region defined by (37) is contained in
the domain of stability given by (29). This definition presents the advantage of being simpler to use than the

stability region definition (29).

Given that ReðkÞ and ImðkÞ are expressed (Eqs. (36a)–(36d)) in terms of the eigenvalues dj of the spatial
operator D1N , we now proceed to derive upper bounds

dReðkÞReðkÞ and dImðkÞImðkÞ for the quantities jReðkÞj and
jImðkÞj. From the expressions (36a)–(36d), it appears that, in all cases, we have

jReðkÞj
jImðkÞj

�
6

�ccffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQjj þRj

q
: ð38Þ

An upper bound for jQjj is given by

jQjj6 k2? þ �qq2 max dReðdÞReðdÞ2; dImðdÞImðdÞ2
� �

; ð39Þ

where dReðdÞReðdÞ ¼ max
j

jReðdjÞj; dImðdÞImðdÞ ¼ max
j

jImðdjÞj: ð40Þ

From the definition of Rj, we have

jRjj6 jQjj þ 2�qq2 dReðdÞReðdÞ dImðdÞImðdÞ: ð41Þ

From (38), (39), and (41), we define the upper bounds dReðkÞReðkÞ and dImðkÞImðkÞ to be

dReðkÞReðkÞ ¼ dImðkÞImðkÞ ¼ �qq�cc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k?
�qq

� 	2
þmax dReðdÞReðdÞ2; dImðdÞImðdÞ2

� �
þ dReðdÞReðdÞ dImðdÞImðdÞ

s
: ð42Þ

At this point, the timestep constraint defined by (37) with (42) holds for several types of spatial approxi-

mation method: e.g. finite differences or spectral methods provided that D1N can be put in diagonal form.

Note also that in practice, this constraint guarantees that the numerical scheme is used within the domain of

stability defined by (29).
We now use this result for the Chebyshev collocation spectral method of Section 3.3. This requires us to

determine the behaviors of the upper bounds dReðdÞReðdÞ and dImðdÞImðdÞ introduced in (40). As is well known [18], the
modulus of the largest dj is proportional to ðN � 1Þ2, where N is the number of collocation points.

However, we need to establish the asymptotic behavior of dReðdÞReðdÞ and dImðdÞImðdÞ as N ! 1. These behaviors,
listed in Table 1, have been checked numerically. Using these behaviors in (42), we obtain approximations

Table 1

Asymptotic growth of the modulus, the real and the imaginary parts of first-order derivative eigenvalues, computed on the domain

½�1; 1�

max
j¼1;N

jdjj

ðN � 1Þ2
bR ¼

max
j¼1;N

jReðdjÞj

ðN � 1Þ2
bI ¼

max
j¼1;N

jImðdjÞj

ðN � 1Þ2

Periodic boundary condition 0.218 0.000 0.218

Dirichlet boundary condition 0.089 0.022 0.086

604 C. Boudesocque-Dubois et al. / Journal of Computational Physics 184 (2003) 592–618



for dReðkÞReðkÞ and dImðkÞImðkÞ as functions of N ; k? and the computational domain length ðb� aÞ. Given these
approximations, we define a critical timestep Dtc from (37), as

Dtc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidReðkÞReðkÞ

b1

� 	2
þ dImðkÞImðkÞ

b2

� 	2s ; ð43Þ

and replace (37) by the condition Dt6Dtc. We may then express explicitly the critical timestep for the two
types of boundary conditions considered here. For a single domain ½a; b� and periodic boundary condi-
tions– in which case k is purely imaginary – one obtains

Dtc ¼
ffiffiffi
3

p

�qq�cc
b� a

2ðN � 1Þ2
k?
�qq

b� a

2ðN � 1Þ2

 !224 þ b2I

35�1=2

: ð44Þ

For Dirichlet boundary conditions, one gets

Dtc ¼
jb1b2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

q b� a

2ðN � 1Þ2
1

�qq�cc
k?
�qq

b� a

2ðN � 1Þ2

 !224 þmax b2R; b
2
I

� �
þ bRbI

35�1=2

: ð45Þ

For a multidomain resolution, the smallest of the critical timestep values (44) or (45) over the sub-

domains is retained. The fact that this determination of Dtc suffices for the scheme to be stable has
been confirmed by investigating the maximum timestep values for stability in a series of numerical

computations performed for different domain decompositions, numbers of collocation points, and

transverse wavenumbers. The corresponding results, summarized in Table 3, are discussed in details in

Section 5.2.

5. Numerical tests

The numerical method, detailed in Section 3, is tested against the three basic fluctuation modes of a

compressible flow [2]: i.e., the entropy, vorticity and acoustic modes. For these tests, we consider numerical

solutions of system (8) in the particular case of a uniform mean flow. More precisely, the mean motion is

given by

�qq �vvx �pp
� �T

¼ 4 0 4=3ð ÞT; ð46Þ

for a fluid adiabatic exponent c ¼ 5=3. Unless otherwise stated, computations are carried out on the do-
main ½0; 1�, divided into two subdomains ½0; 0:5� and ½0:5; 1�. All numerical results are obtained with a 15
significant digit floating point representation.

Table 2

Acoustic plane waves of arbitrary wavenumbers: wavenumber influence over the critical timestep, in the case of 2� 40 collocation
points, with periodic boundary conditions

k? 1 10 102 103 104 105 107

Dtc 4:4� 10�4 4:4� 10�4 4:4� 10�4 4:3� 10�4 2:1� 10�4 2:3� 10�5 2:3� 10�7
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5.1. Acoustic plane waves of arbitrary wavenumbers in the m-variable

We consider the steady mean flow (46) in the m-variable. For an acoustic mode, the perturbed flow is
isentropic. Consequently the pressure is proportional to the density, so that Eq. (7a) is equivalent to Eq.

(7d). The perturbed flow is also irrotational, implying an algebraic relation between Eqs. (7b) and (7c).

System (8) then reduces to two equations, which can be combined to give a single second-order hyperbolic

equation satisfied by the four quantities, a specific form of the wave equation,

o2

ot2

�
� �qq�cc
� �2 o2

om2
þ k?�cc
� �2�

V ¼ 0; ð47Þ

with V ¼ ðq vx r? �~vv? pÞT. We consider periodic boundary conditions in which case a particular so-
lution is given by plane acoustic waves of the form

gðm; tÞ ¼ A sin kmmð � xtÞ; ð48Þ

where the pulsation x ¼ 2p=T , T denoting the period of the wave, is given by x ¼ �cc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�qqkmÞ2 þ k2?

q
, andA is

the plane wave amplitude. A corresponding solution V of (8) is

Table 3

Stability study: investigation of the numerical stability regions in terms of values of the ratio Dt=Dtc, with Dtc given by (45), for different
domain decompositions, collocation point numbers, and transverse wavenumbers

Estimates of the largest

timestep for stability:

Dtmax=Dtc in

Decomposition Resolution k?

½1:8; 1:9� ½0; 1� 1� 40 1

½1:6; 1:7� ½0; 1� 1� 40 103

½1:2; 1:3� ½0; 1� 1� 40 104

½1:2; 1:3� ½0; 1� 1� 40 105

½1:8; 1:9� ½0; 1� 1� 80 1

½1:8; 1:9� ½0; 1� 1� 80 103

½1:3; 1:4� ½0; 1� 1� 80 104

½1:2; 1:3� ½0; 1� 1� 80 105

½1:8; 1:9� ½0; 1
2
� [ ½1

2
; 1� 2� 40 1

½1:1; 1:2� ½0; 1
2
� [ ½1

2
; 1� 2� 40 103

½1:2; 1:3� ½0; 1
2
� [ ½1

2
; 1� 2� 40 104

½1:2; 1:3� ½0; 1
2
� [ ½1

2
; 1� 2� 40 105

½1:8; 1:9� ½0; 1
2
� [ ½1

2
; 1� 30 + 50 1

½1:7; 1:8� ½0; 1
2
� [ ½1

2
; 1� 30 + 50 103

½1:2; 1:3� ½0; 1
2
� [ ½1

2
; 1� 30 + 50 104

½1:8; 1:9� ½0; 1
3
� [ ½1

3
; 1� 2� 40 1

½1:5; 1:6� ½0; 1
3
� [ ½1

3
; 1� 2� 40 103

½1:2; 1:3� ½0; 1
3
� [ ½1

3
; 1� 2� 40 104

½1:8; 1:9� ½0; 1
2
� [ ½1

2
; 1� 40 + 120 1

½1:8; 1:9� ½0; 1
2
� [ ½1

2
; 1� 40 + 120 103

½1:7; 1:8� ½0; 1
2
� [ ½1

2
; 1� 40 + 120 104

½1:2; 1:3� ½0; 1
2
� [ ½1

2
; 1� 40 + 120 105
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qðm; k?; tÞ ¼ �qqgðm; tÞ;

vxðm; k?; tÞ ¼ �cc2
�qqkm
x

gðm; tÞ;

r? �~vv?ðm; k?; tÞ ¼ �cc2
k2?
kmx

og
om

ðm; tÞ;

pðm; k?; tÞ ¼ �cc2q:

ð49Þ

Computations of these particular modes are carried out with 40 collocation points per subdomain and a

critical timestep computed from (44). Several values of k? are considered in the range ½1; 104�. Let us recall
that for fixed km – here taken to be km ¼ 2p – increasing values of k? correspond to larger propagation
angles of the plane wave with respect to the x-axis. The variation of the critical timestep with respect to the
transverse wavenumber k? is summarized in Table 2. These results show that for k? � ðN � 1Þ2, the
timestep is driven by the CFL condition for the one-dimensional – i.e., purely longitudinal – system, where

Dtc classically behaves like ðN � 1Þ�2. On the contrary, for k? � ðN � 1Þ2 the critical timestep behavior is
dominated by k?, namely as Dtc � k�1? . Computed density profiles are displayed in Fig. 2, for wavenumbers

km ¼ 2p and k? ¼ 10 and at four different times. From this figure, one can notice that this single acoustic
plane wave is well reproduced for times up to a period.

This tendency is confirmed by relative error plots given in Fig. 3(a) for time running between 1 and
100 periods. However a linear growth of this error is clearly seen in this figure. Nevertheless the levels

Fig. 2. Acoustic plane waves of arbitrary wavenumbers. Density profiles, for 2� 40 collocation points, for wavenumbers km ¼ 2p and
k? ¼ 10, at four different times t ¼ T=4; T=2; 3T=4; T , where T is the plane wave period.

Fig. 3. Acoustic plane waves of arbitrary wavenumbers. (a) Largest relative errors upon the density vs. the number of periods, for

2� 40 collocation points, for wavenumbers km ¼ 2p and k? ¼ 1; 10; 100; 1000. (b) Same as in (a), but the transverse wavenumber is
kept fixed at k? ¼ 1000. The timestep is divided by 2, 10 and 20, respectively.
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of these errors confirm that the scheme is used in its stability region. Indeed computations performed

with a sufficiently large Dt are clearly unstable. We notice (Fig. 3(a)) that the error level, which is
relatively small for k? ¼ 1 or 10, over the full time range, increases with k?. These larger errors are
explained by the fact that the critical timestep is driven by the stability condition and not by any

accuracy requirement. Indeed, computations over a period, for k? ¼ 1 or 10, represent about 700 cycles
of the scheme, while for k? ¼ 1000 a full period is covered in only 20 cycles. Consequently one can
expect poorer resolution in this case. In order to check this point, we performed computations where
the timestep was divided by 2, 10 and 20 corresponding, respectively, to 40, 200, 400 cycles per period:

see Fig. 3(b). The error level obviously decreases with diminishing timesteps. For example, a calculation

with k? ¼ 100 and a timestep Dtc given by (44), and a second calculation with k? ¼ 1000 and a timestep
equal to 1/10 of the value given by (44) lead to the same number of cycles per period and comparable

errors (compare Fig. 3(a) and (b)).

Relative errors versus timestep values (curves in Fig. 4) evidence a Dt3 behavior, thus confirming that the
time integration scheme is third-order accurate. Spatial density error profiles are shown in Fig. 5, for the

two values of k? ¼ 1 and 100 at three different times. These errors appear to be minimal near the zeroes of
the solution and maximum about the solution extrema. Note that the location of the zeroes of the com-

puted densities do not evolve from period to period, even after 100 periods. This indicates that the nu-

merical errors are amplitude errors rather than phase errors. In addition these results show that the periodic

boundary conditions and matching condition are correctly handled.

From these computations, it appears that the critical timestep values given by (44) ensure the use of the

numerical scheme in its stability region. However this timestep determination does not obviously guaranty

error levels which are uniform with respect to the angle of propagation (here identified by k?) of acoustic
plane waves.

Fig. 4. Acoustic plane waves of arbitrary wavenumbers. Relative error profiles upon the density vs. the timestep, for 2� 40 collocation
points, wavenumbers km ¼ 2p and k? ¼ 1000, at three different times t ¼ T ; 10T ; 100T , where T is the plane wave period.

Fig. 5. Acoustic plane waves of arbitrary wavenumbers. Relative error profiles upon the density, for 2� 40 collocation points, for
wavenumbers km ¼ 2p and k? ¼ 1 (a) and k? ¼ 100 (b), at three different times t ¼ T ; 10T ; 100T , where T is the plane wave period.
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5.2. Vorticity mode in the m-variable

Here again we use the steady mean flow (46) in the m-variable. In the linear approximation, vorticity
modes are characterized by perturbations of entropy, pressure and divergence of the velocity field which are

zero [2]. This corresponds to steady solenoidal velocity fields. With the retained coordinate system ðm; y; zÞ,
such vorticity modes are stationary. As a particular case, we choose the x-component of the velocity field to
be (see Fig. 6)

vxðm; k?; tÞ ¼ exp m�l0
l1�l0

� �2
m�l1
l1�l0

� �2� �
� 1 for m 2 ½l0; l1�;

0 elsewhere:

8<: ð50Þ

In this definition, l0 and l1 can be chosen arbitrarily within the computational domain. The transverse
expansion r? �~vv? is deduced from the constraint that the velocity field should be solenoidal, i.e.,

r �~vv ¼ �qq
ovx
om

þr? �~vv? ¼ 0: ð51Þ

The non-zero component of the vorticity is then

rot
#!

~vv � ez!¼ �ik?
�qq
k2?

o

om
r? �~vv?

 
þ vx

!
ð52Þ

taking kz ¼ 0. Boundary conditions in this case are taken to be of the non-reflecting type.
As a result, the critical timestep is evaluated with Eq. (45). This timestep variation versus k? is re-

produced in Fig. 7. We present in Fig. 8 the value of the divergence of the velocity for four different

resolutions, at time t ¼ 10, k? ¼ 10 and for the particular choice l0 ¼ 0:5 and l1 ¼ 1 in (50). These results
show that the computed solution remains solenoidal. Note that due to the particular definition (50), the
transverse expansion is of class C0ð½0; 1�Þ in which case one can expect numerical errors at the edges l0
and l1 to be larger than for the rest of the domain. This is indeed the case as seen in Fig. 8. Apart from
this feature, the numerical errors indicate that the non-reflecting boundary treatment behaves correctly

here.

5.2.1. Stability study

We check the stability analysis performed in Section 4 by investigating the maximum timestep values for

stability, Dtmax, in a series of numerical computations performed for different domain decompositions,
numbers of collocation points, and transverse wavenumbers. From this study, it turns out that (see

Table 3):

Fig. 6. Vorticity mode. Initial perturbation defined from Eq. (50).

C. Boudesocque-Dubois et al. / Journal of Computational Physics 184 (2003) 592–618 609



1. The stability condition Dt6Dtc (45) appears to be a sufficient condition for stability, for all decompo-
sitions, numbers of collocation points and transverse wavenumbers tested.

2. For small values of k?, Dtc is clearly below Dtmax whatever the number of collocation points used. As
already noted from Table 2 and Fig. 7, the behavior of Dtc is then dominated by the dependence in
ðN � 1Þ�2.

3. For large values of k?, Dtc is close to Dtmax. Therefore, Dtmax evolves as k�1? .

4. The ratio Dtmax=Dtc is most sensitive to spatial resolution and domain decomposition for intermediate
values of k?, where k? ’ ðN � 1Þ2.

5.3. Entropy mode in the n-variable

For the mean flow of Sections 5.1 and 5.2, we now choose to solve the perturbation equations in their

ðn; tÞ-variable formulation (Eqs. (A.6)–(A.8), Appendix A) for a ¼ 1. Consequently the coefficients of the
PDEs are no longer constant in time nor uniform in space (cf. Appendix A). In other words, the situation is

equivalent to solving numerically these PDEs for a non-constant and non-uniform mean flow.

Fig. 8. Vorticity mode. Velocity divergence, for four different spatial resolutions, for transverse wavenumber k? ¼ 10 at time t ¼ 10.

Fig. 7. Vorticity mode. Critical timestep vs. the transverse wavenumber, in the case of 2� 40 collocation points, and Dirichlet
boundary conditions.
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Entropy modes are characterized by zero pressure and velocity perturbations [2], so that the acoustic and

vorticity modes are also zero. Any initial density perturbation satisfying a zero pressure perturbation will
comply with this definition for all times in the coordinate system ðm; y; zÞ. In the n-coordinate system, an
entropy mode undergoes a non-uniform translation and shrinks as time goes on.

Choosing the computational domain to be 06 n6 1 with two subdomains defined as in the beginning of
Section 5, we consider computations for time tP t0 > 0 and non-reflecting boundary conditions at both
ends of the domain. The density perturbation, including its initial condition, is chosen to be given by the

function

qðn; k?; tÞ ¼
exp nt=t0�N0

N1�N0

� �2
nt=t0�N1
N1�N0

� �2� �
� 1; n 2 N0

t0
t ;N1

t0
t

$ %
0; n 2 0;N0

t0
t

$ %
[ N1

t0
t ; 1

$ %
8<: ð53Þ

for tP t0.
The timestep constraint is then estimated with (45), but for which the eigenvalues of the corresponding

discretized operator S4N (Eq. (24)) are taken to be ðk � nÞ=t where k stands for the eigenvalues of S4N in the
ðm; tÞ-formulation (cf. Appendix A, Eq. (A.9)).
Results of computations for the particular case N0 ¼ 0:5;N1 ¼ 1; t0 ¼ 1 with 50 collocation points per

subdomain are shown in Fig. 9. Density profiles (Fig. 9(a)) at different times clearly illustrate the non-

uniform convection and contraction of the entropy mode. As a result of this contraction, the non-zero

portion of the solution is described by fewer and fewer points as time increases. Starting with 50 points

for the initial density profile, the spatial representation only uses eight points to approximate the same

profile at time t ¼ 6. As a consequence, the error deteriorates with increasing time as one can notice on
Fig. 9(b) and near the right end of the computational domain for t ¼ 6 (see Fig. 9(a)). A remedy for
this shortcoming would be of course to use dynamical adaptive techniques for determining the sub-

domain boundary location and optimizing the coordinate mapping within each subdomain, e.g. see

[8,19].

5.4. Forced longitudinal acoustic mode in the m- and n-variables

As a final test, we consider the excitation of a longitudinal acoustic plane wave (k? ¼ 0) by means of a
time-dependent density law imposed at one of the boundaries of the computational domain, for the same

uniform mean flow (46). We choose to solve this problem in both the m- and n-coordinate systems for
a ¼ 1. In each case, the imposed time-dependent density boundary condition is chosen to be applied at the
left boundary (m ¼ 0 or n ¼ 0), while the boundary condition at the right boundary (m ¼ 1 or
n ¼ ðt0 þ T Þ�1) is taken to be of the non-reflecting type. More precisely, the physical boundary condition
for the perturbed density follows the law

Fig. 9. Entropy mode. Density profiles (a) and relative errors (b), for 2� 50 collocation points, at four different times.
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q0ðtÞ ¼ �qqgðm ¼ 0; tÞ; ð54Þ

where x ¼ �qq�cckm and g is given by Eq. (48). For initial conditions Vðm; k?; t ¼ 0Þ ¼ 0, the perturbed density
solution is

qðm; tÞ ¼ �qqgðm; tÞ; 06m6 �qq�cct;
0 elsewhere;

&
ð55Þ

while other quantities evolve according to Eq. (49) with k? ¼ 0. The corresponding definitions of (54) and
(55) in the n-variable are readily obtained from the transformation (5) for tP t0 > 0. The treatment of the
imposed density boundary condition follows from Eq. (21).

5.4.1. Solution in the m-variable
Numerical computations are performed with a timestep such that Dt6Dtc, with (45). Spatial density

profiles for times t ¼ T =4; T=2; 3T=4; T (Fig. 10(a)) show the acoustic wave front entering at the domain left
boundary and propagating until it starts exiting at the opposite boundary. Largest relative numerical errors
in terms of density are also shown in Fig. 10(b) for time between T =100 and 100T . These errors – plotted in
log–log scales – are characterized by a rather high level (’ 10�1) for the whole duration of the wave front
propagation inside the domain, i.e., for 06 t6 T . This behavior is due to the fact that the solution (55) is
only C0 at the wave front. Indeed as time increases beyond one period, the error significantly decreases and
reaches a plateau below 10�5 for tP 2T . In particular, this result illustrates a proper implementation of a
particular case of time-dependent boundary conditions and of a non-reflecting boundary condition at a

characteristic boundary (m ¼ 1).

5.4.2. Solution in the n-variable
Here the critical timestep is evaluated as described in Section 5.3. The equivalent of Fig. 10 (density

profiles and relative errors) is reproduced in Fig. 11 for this situation, where now tP t0 ¼ 1. The
behavior of the density profiles (Fig. 11(a)) is similar to the previous case for 06 t6 T . For t � t0P T ,
the wave front leaves the domain through the non-reflecting boundary and the acoustic wave keeps

propagating while undergoing the non-uniform contraction due to the transformation m ! n. As a
result, more and more oscillations accumulate near the left boundary (n ¼ 0). As a consequence, the
numerical errors tend to grow as time increases due to the deterioration of the spatial resolution in

this region. This behavior is illustrated on Fig. 11(b) for t � t0 P 2T by the positive slope of the error
curve.

In addition, we have studied the accuracy of the time-integration scheme in this case of a non-uniform
time-dependent mean flow and of a time-dependent boundary condition. For this purpose, computations

have been carried out for values of the timestep ranging from 4� 10�5–10�3. The absolute errors, obtained

Fig. 10. Forced longitudinal acoustic mode in the m-variable. Density profiles (a) at t ¼ T=4; T=2; 3T=4; T (from left to right), for
2� 40 collocation points. Largest relative error (b) vs. the number of periods.
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at different times (ðt � t0Þ=T ¼ 2; 10; 20), clearly show that the Dt3 dependence is recovered both within the
domains and at the boundaries for t � t0 > 2T (see Fig. 12). Indeed, for t � t0 ¼ 2T , the errors result from
the fact that the solution is only C0 in space for t � t06 T .

6. Conclusion

We have developed a pseudo-spectral method for handling one-dimensional systems of PDEs which

arise from linearizing the Euler equations about an exact solution depending eventually on space and time.
Our approach is based on a Fourier analysis of the transverse perturbed motion. As a result the transverse

wavenumber k? is involved in the linear perturbation differential system and deeply influences its properties.
The present numerical method utilizes two subdomains with a Chebyshev discretization and an explicit

three-step third-order Runge–Kutta scheme. Treatments of physical boundary conditions and matching

conditions are handled following the approaches suggested by Thompson [22,23] and Kopriva [10]. An

analytical stability analysis of the numerical method is performed for any explicit three-step third-order

non-degenerate Runge–Kutta scheme, which may be applied to several types of spatial discretization

(Fourier, Chebyshev or finite-differences) provided that the first-order spatial derivative operator can be put
in diagonal form. This analysis, carried out for a uniform mean flow over a single computational domain,

emphasizes the role of the transverse wavenumber.

Fig. 12. Forced longitudinal acoustic mode in the n-variable. Absolute error profiles upon the density vs. the timestep, (lines: domain
interiors; lines with symbols: domain boundaries) for 2� 40 collocation points, for wavenumbers km ¼ 2p and k? ¼ 0 at three different
times t � t0 ¼ 2T ; 10T ; 20T , where T is the plane wave period.

Fig. 11. Forced longitudinal acoustic mode in the n-variable. Density profiles (a) at t � t0 ¼ T=4; T=2; 3T=4; T (from left to right), for
2� 40 collocation points. Largest relative error (b) vs. the number of periods.
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Numerical experiments show that this constraint may be used on two-subdomain configurations pro-

vided the minimum of the two subdomain constraints is retained. Four series of test cases have been carried

out for the three basic fluctuation modes of a compressible flow: acoustic, vorticity and entropy modes.

Acoustic plane waves of arbitrary wavenumbers (Section 5.1), solved with a steady mean flow and periodic

boundary conditions, confirm that the time integration scheme is third-order accurate. However the am-

plitude error grows linearly with time and is larger as the angle of propagation increases. Vorticity mode

computations (Section 5.2), carried out for a steady mean flow and non-reflecting boundary conditions,

show that our current treatment of non-reflecting boundaries behaves correctly for this kind of non-
propagating modes with non-zero transverse wavenumber. In addition, these computations have been used

to check the numerical stability criterion we propose. Computations of an entropy mode (Section 5.3) for a

time-dependent mean flow and non-reflecting boundary conditions display satisfactory error levels and

expected behaviors. Finally a longitudinal acoustic plane wave excited by a time-dependent boundary

condition (Section 5.4) has been computed for both a time independent and a time-dependent mean flow.

The former configuration illustrates proper treatments of a time-dependent boundary condition and of a

non-reflecting boundary condition at a characteristic boundary. The latter configuration confirms that the

absolute errors behave as Dt3 both within the subdomains and at the boundaries, for a time-dependent
mean flow and a time-dependent boundary condition.

More generally, we have shown that the accuracy of the method is governed by the timestep and not by

the transverse wavenumber k?. As a consequence, achieving a given level of accuracy may require smaller
timestep values than those imposed by the numerical stability constraint. In that respect, the advantage of

using a time implicit scheme appears here to be marginal. The present method may be improved by using a

multidomain or a dynamical multidomain approach. Applications of this method to some situations of

physical interest will be given in forthcoming papers.

Appendix A. Derivation of linear perturbation equations

The system of equations satisfied by the linear perturbations is derived from (1) in the following manner.

We first perform in (1) the change of variables~xx ! ~XX ¼ ðm; y; zÞ with m defined by (2). By making use of
the partial derivative transformations

o

ox
! �qq

o

om
and

o

ot
! o

ot
� �qq�vvx

o

om
;

the equations of motion in the new variables follow as

oq
ot

þ �qqðvx � �vvxÞ
oq
om

þ~vv? � r?q þ q �qq
ovx
om

�
þr? �~vv?

	
¼ 0;

q
ovx
ot

�
þ �qqðvx � �vvxÞ

ovx
om

þ~vv? � r?vx

	
þ �qq

op
om

¼ 0;

q
o~vv?
ot

 
þ �qqðvx � �vvxÞ

o~vv?
om

þ~vv? � r?~vv?

!
þr?p ¼~00;

op
ot

þ �qqðvx � �vvxÞ
op
om

þ~vv? � r?p þ cp �qq
ovx
om

�
þr? �~vv?

	
¼ 0;

ðA:1Þ

with the notations ~vv? ¼ vy~eey þ vz~eez, r? ¼ ðo=oy o=ozÞT for the transverse velocity field and transverse
gradient operator, all quantities being now taken as functions of ~XX and t.
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We then assume that all the flow quantities depend on a perturbation parameter, say e, such that e ¼ 0
corresponds to the mean flow, i.e., uð~XX ; t; eÞje¼0 � �uuðm; tÞ for any scalar quantity u. By defining the linear
perturbation of u to be the partial derivative

u0ð~XX ; tÞ ¼ ou
oe

ð~XX ; t; eÞ
����
e¼0

; ðA:2Þ

the equations satisfied by q0;~vv0; p0 are obtained formally by differentiating, with respect to e, the equations in
(A.1), keeping in mind that ~XX ; t; e are taken as independent variables. This definition corresponds to an
Eulerian description of the perturbations (e.g. see [16], Section 56) in the coordinate system ðm; y; zÞ. The
resulting system – a particular form of the linearized Euler equations – reads

oq0

ot
þ �qq2

ov0x
om

þ �qq
o�vvx
om

q0

 
þ o�qq
om

v0x þr? �~vv0?

!
¼ 0; ðA:3aÞ

ov0x
ot

þ op0

om
� 1

�qq
o�pp
om

q0 þ �qq
o�vvx
om

v0x ¼ 0; ðA:3bÞ

o~vv0?
ot

þ 1
�qq
r?p0 ¼~00; ðA:3cÞ

op0

ot
þ c�pp �qq

ov0x
om

�
þr? �~vv0?

	
þ �qq

o�pp
om

v0x

 
þ c

o�vvx
om

p0
!

¼ 0; ðA:3dÞ

where (A.3b) is derived with the help of the equation for �vvx in (3).
As is usual, two major simplifications of the above system of equations can be carried out. One may

indeed replace, in the above system of equations, the unknown ~vv0? by its divergence r? �~vv0? – called here
transverse expansion. Taking the transverse divergence of (A.3c) yields then the evolution equation for this

new unknown. Another equation, accounting for the evolution of solenoidal transverse motions, should in

principle be added at this point. However such motions are time independent and hence are solid rotations

about Ox with angular velocities stipulated by initial conditions.
The second simplification consists in considering the Fourier transforms, in the y- and z-variables, of the

equations. The resulting system is then simply given by (A.3a), (A.3b), and (A.3d) along with

o

ot
r? �~vv0?
� �

� k2?
�qq
p0 ¼ 0; where k? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
; ðA:4Þ

with the convention that u0, for any u, stands now for the Fourier transform of the corresponding linear
perturbation. Consequently u0 is a complex-valued function of the variables m; ky ; kz – the Fourier space
variables, i.e., the y- and z-wavenumbers – and t. However as these wavenumbers only appear explicitly in
(A.4) through the transverse wavenumber k?, u0 may be considered as a function of ðm; k?; tÞ only. Different
values of ðky ; kzÞ are then distinguished by the corresponding initial and boundary condition Fourier
transforms.
We note that assuming two-dimensional motions for the linear perturbations yields an equivalent for-

mulation for the Fourier transformed equations.

A.1. Formulation in the self-similar variable n

For self-similar mean flows of the form (4), it is convenient to proceed to the change of variable m ! n in
(A.3a), (A.3b), (A.3d), and (A.4). We do so by introducing non-dimensional wavenumber and time vari-

ables, j? and t
, according to the relations
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j? ¼ ‘k?; t
 ¼ t=s; ðA:5Þ

where ‘ is a length scale to be chosen and s the associated time scale, s ¼ ð.‘=AÞ1=a.
We then define non-dimensional linear perturbations G; Vx;r? � V ; P to be the functions of ðn; j?; t
Þ

given by the relations

q0 ¼ .G; v0x ¼
A
.

sa�1Vx; r? �~vv0? ¼ s�1r? � V ; p0 ¼ A2

.
s2ða�1ÞP :

Using these definitions in conjunction with the similarity transformation (4) and (5) leads to replacing
(A.3a), (A.3b), (A.3d), and (A.4) by the equation

oV


ot

þ A


oV


on
þ B
V
 ¼ 0; ðA:6Þ

with V
 ¼ ðG Vx r? � V P ÞT,

A
 ¼

�an=t
 �GG2=ta
 0 0

0 �an=t
 0 1=ta

0 0 �an=t
 0

0 ta�2

�GG �CC

� �2
0 �an=t


0BBBB@
1CCCCA; ðA:7Þ

where �CC denotes the reduced function for the isentropic sound velocity, i.e., �CC ¼
ffiffiffiffiffiffiffiffiffiffiffi
c �PP= �GG

p
, and

B
 ¼

�GG
t

d �VV
dn

�GG
ta

d �GG
dn

�GG 0

� ta�2

�GG
d �PP
dn

�GG
t

d �VV
dn 0 0

0 0 0 � j2?
�GG

0 ta�2

�GG d �PP
dn ct2a�2


�PP c �GG
t

d �VV
dn

0BBBBB@

1CCCCCA: ðA:8Þ

We note that the two systems of Eqs. (7a)–(7d) – or equivalently (8) – and (A.6) are of identical forms.

Furthermore, system (A.6) is, like (8), nonstrictly hyperbolic, the spectrum of A
 being deduced from that

of the matrix A of (9) via the transformation

Ki 7!Ki=ta
 � an=t
; ðA:9Þ

while the associated eigenvectors are those of (12) but expressed in terms of the reduced functions �GG, �CC, and
of t
. However, unlike the matrix A, A
 is neither constant in time nor uniform in space as soon as the

similarity exponent a in (5) is non-zero.

Appendix B. A linear algebra theorem

Theorem B.1. Let M be a 2N � 2N matrix of the form

M2N ¼ f1IN WU

WL f2IN

� 	
; ðB:1Þ

where WL;U ¼ diagðwL;U
j Þ, j ¼ 1; . . . ;N , fi 2 R, i ¼ 1; 2, then
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detM2N ¼
YN
j¼1

f1f2
�

� wL
jw

U
j

�
8N P 1:

Proof. The proof follows by induction on N . For N ¼ 1, we have detM2 ¼ f1f2 � wU
1 wL

1. For N > 1, we
compute detM2N in terms of detM2ðN�1Þ as follows. detM2N reads

detM2N ¼

f1 wU
1

. .
. . .

.

f1 wU
N

wL
1 f2

. .
. . .

.

wL
N f2

��������������

��������������
: ðB:2Þ

By means of the linear combination f1 � 2N th row �wL
N � N th row, the 2N th-row reduces to its diagonal

coefficient. Expanding the resulting determinant with respect to this very row yields

detM2N ¼ 1

f1
f1f2
�

� wU
NwL

N

�
f1 wU

1

. .
. . .

.

f1 0 wU
N�1

0 . . . 0 f1 0 . . . 0

wL
1 f2

. .
. . .

.

wL
N�1 0 f2

����������������

����������������
: ðB:3Þ

The unexpanded determinant in this expression obviously evaluates to f1 detM2ðN�1Þ, so that we have

detM2N ¼ f1f2
�

� wU
NwL

N

�
detM2ðN�1Þ: � ðB:4Þ
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